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ABSTRACT

Center-of-mass coordinates are employed to determine the dependence
of energy and other physical properties of systems with three Coulombic
particles (two identical) on the masses of the particles. No adiabatic ap-
proximation is needed, since the non-relativistic and spin free Hamiltonian with the
exact mass dependence is used in the variational problem. The total angular momentum
of the particles is quantized to unity. Both symmetry states with the space-z-
component of angular momentum Mz = 0 are considered. The computations cover
the entire range of the mass ratio as well as several different charges of the
particles. In most cases the energies obtained are either the lowest yet found
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or the first to be reported.
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I. INTRODUCTION

Over the past few years there have appeared several papers cn
the quantum mechanical three~body problem in which the exact dependence
of the Hamiltonian on the masses has been properly taken into account,i1™7
The interest in this problem has been aroused by the need for a more
direct approach in describing a system of three particles of nearly equal
masses, since the usual approximation of infinitely heavy (stationary)
nuclei obviously cannot be made. If all the particles are to be allowed
to move the nonrelativistic ahd spin free Hamiltonian of the system is
expressed in terms of center-of-mass coordinates, and the Schridinger
equation becomes separable_into twovparts, the one describing the motion
of the particles arouﬁd:the cehter of‘mass,ﬁeing the only one of interest
here. All the work done so far has been on the ground states of molecu-
lar-like systems (the paper by Kolos, et al, with its treatment of the
ground state of atomic helium being the only"exception). For zero angu-
lar momentum states the wa§efﬁnctions depend only on the relative cor-
figuration of the particles, i.e. they are independent of the orientatiorn
in space. This fact leads immediately to a considerable simplification
of the algebra of the problem. However, states with higher rotatioral
quantum number do depend on the orientation in space, and the probl:ny
becomes correspondingly more difficult, It is the purpose of this "~
to investigate systems of three Coulombic particles (two identical) o:
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arbitrary masses in a state with rotational quantum number egual to
unity. The coordinate transformation and the resulting Hamiltonian are
the subject of Section IT. Section IIT is devoted to the choice of
wavefunctions. Results for all investigated systems are presented and
discussed in Sections IV and V, respectively. Finally, the isotope

shifts for some atomic ions are considered in Section VI.

IT. COORDINATES, HAMILTONIAN, AND UNITS
The Schrddinger equation for a system of N particles is

N .
(— 1425 (1/my)vi + V) ¥ = Ey, (II-1)

i=1
where V is the interparticle potential energies, m; is the mass of the
jth particle, and the differentiation is with respect to the laboratory
coordinates xj, Yj» 23- The coordinates of the kth particle may be

eliminated by the transformation

N
X = (l/M) 2 mixi,
i=1
X} =Xy - X, (11-2)

where



M= Zm, all J # k,

in favor of the center of mass coordinates X, Y, Z. When Eqs. (II-2)
are substituted into Eq. (II-1) the resulting Schrvdinger equation may
be separated into a part describing the translational motion of a free
particle of mass M and energy Eq, and another part describing the in-

ternal motion of the N particles. The internal Schrtdinger equation is8

[‘ 3 hz(} (1/mg )93 2 + (1/my) 1; V.7t + V:]\y
fk 1 /i K i,j;ék i J)
= B, (11-3)

where E = ET - EC and the differentiation is with respect to the rela-
tive primed coordinates defined by Eq. (II-2). In the present case the
numbering has been chosen such that the two identical particles are
labeled 1 and 2 while the odd particle is referred to as 3. It is con-

venient to adopt the units
€ = ue*i2 for energy
and

ag = i%."te™? for length,




Also, let the mass ratio be

m/ nz,

ho)
It

so. that

n/(1 + p).

=
il

If the third (odd) particle is chosen to be the one to which the other
two will be referred as origin, the internal Hamiltonian for the system

under consideration becaomes
H=-3( 31 t+ vgz) - plp + l)_l.Ygl‘y_;?,z +V, (1I1-4)

where, in accordance with Eq. (II-2), X33 = X] - X3, X35 = Xp - Xz, ete.
The separation of the motion of the center of mass has reduced
the problem from a nine-dimensicnal to a six-dimensional one. A more
useful set of coordinates than the six Cartesian coordinates in Eq. (II-4)
can be obtained by defining three variables specifying the triangle formec
by the three particles, and three Eulerian angles describing the orierta-
tion in space of the plane of the triangle. The most natural choice for
the first three coordinates is the interparticle distances, rys, roz,
and rzy, Or any suitable combination of them. The variables employed

here are



S = I‘Sl + oz,
t=Tg - Tz
u = rlz. (II"‘S)

The Eulerian angles are defined as follows: « is the angle
between the fixed x axis and the line of nodes (liné of intersection be-
tween the fixed xy plane and the plane of the particlds), and g is the
angle between the positive directions of the normals to those two planes,
The last angle, y, is a measure of the rotation of the triangle about its
normal. It has been suggestedl® that a possible choice of y could be
made by defining it to be the angle between the line of nodes and one of
the principal axes of inertia of the system. While such a choice may be
suitable for molecularflike systems it would probably be impractical for
atomic systems, and would lead to rather complicated formulas. Insteaid,
v has been defined to be the angle between the line of nodes and the
vector rio = re - rj, where rj and rp are the position vectors of the
identical particles in the stationary frame. This cholice is meaningful
over the entire range of the mass ratio, and also results in a simple
behavior of y under permutation of the identical particles. The trans-
formation of the Hamiltonian into these coordinates, while laborious; is
straightforward. The transformation equation and the form of the trars.
formed Hamiltonian are given in terms of the interparticle distances arc

the Eulerian angles in Appendix I.
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pressed 1n terms of the charge ratio
g = Zs/Z’
then the potential V may be written
V = ZZ(O'/I‘ZS + U/r31 + l/rlz). (11-8)

It is also possible to adopt charge-dependent units defined by

#

al a_ /72
0 0/ J
€ o= Z4€ E}
in which case the potential becomes

v _ 1 ' ' =7\
V' o= c'/rz5 + cr/r31 + l/rlz. (T1-7)

Note that the form of the kinetic energy operator is not affected by
this transformation., It follows that the energies obtained with

Eq. (II-6) and Eq. (II-7) are related by
E = E'/2%,
and also

= ! (TT-8)
Ty = zerij. (II-8



The angular dependence of the wavefunctions!! for L = 1 is
given by the representation coefficients of the irreducible representa-
tions of the three-dimensional rotation group, tﬁ',Mz<a’B’7)' The angu-
lar momentum L = 1 has a space-z-component, Mi, and a body-z-component,
u'. The radial part was taken in the form of a polynomial in u, s, and
t, times a suitable exponential. For atomic systems (very small p) ex-
cellent results have been obtained with exp[-as + abt] while molecular

systems (very large p) are described well by a Gaussian exp[-c(u - u0)2].

1. States with Mz =0

For states with M, = O the three matrix elements, D&, 0s are
)

1 ; 1 :
272 singe™7, cosg, - 272 simpe’ 7, (III-1)
for p' = - 1, 0, + 1, respectively. It is easily verifiedl® that the

functions (III-1) are eigenfunctions of L2 and M,, namely

21l _ 2nl
Fhino = B0
1 =
MZDIJ«':O =0
for p' = -1, 0, + 1. Any linear combination of the set (III-1), in

particular the funetions

sing siny, sing cosy, cosg, (I1I-2)



are also eigenfunctions of 12 and Mz‘ The first two members of the
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(III-2) are of odd parity while the third one has an even parity as may
be seen by inspectiop from the formulae in Appendix I. It has been
shown by Breitl® that the third term, cosp, when used in a wavefunction
describing a two electron atomic system corresponds to the case of
equivalent orbits and is energetically unsuitable. The remaining two
terms, sing siny and sing cosy, are the angular functions used here.
The permutation operator, P12’ which permutes the identical particles,

when operating on the angular part of the wavefunctions gives

Pyosing siny = - sinpg siny,

P1psing cosy

sing cosy. (1IT1-3)

Thus the Egqs. (III-3) serve to determine the permutational symmetry cf
the radial part of the wavefunctions.

The choice of the form of the radial part depends on the valie
of the mass ratio p. The polynomials must be of such nature as tc a’.¢

the wavefunctions to pass over intol?

¢ = Fy(ry,ro,rys)cosby - Fo(ry,rp,rip)cosy,

with

Fp(ry,rp,r1p) = #F1(ra,ry,r1p)



as p—~> 0, and into an acceptable molecular wavefunction of Z-cymmetry as

p =+ o. This can be accomplished by writing

v = [ud(f + ¥) + st(f - 5)]sine siny
- 2Q(f - f)sing cosy, (III-4a)
where
f = P(s,t,u)exps[-as+abt-c(u-ug)?], (III-4b)
P(s,t,u) = I Aggpstt@u®l (III-4c)
{,m,n=0
(1) = +£(-t), (III-44)

and Nypn, 8, b, ¢, and uy are the variationally determined constants.

The symmetry of the limiting cases of p is determined by the choice of
signs in Eq. (III-4d). With }(t) = f(=t) the wavefunction is antisym-
metric under permutation of the identical particles, while with

f(t) = - f(-t) it is symmetric. Thus for atomic systems (p - 0) the +
sign is to be used to describe triplets, the - sign to describe singlets,
For molecular systems it is only necessary to establish the behavior of
the wavefunction with respect to a change in sign of the electronic czo-
ordinates. Such an operation, however, is equivalent to an inversicn

at the center of symmetry followed by a permutation of the identicali

particles. Since the angular functions have negative parity the + sign



(antisymmetric) gives rise to zzg states while the - sign (symmetric)
ylelds zzu states. The conventional atomic and molecular symmetry
classifications, however, are based on the assumption of infinite nu-
clear masses. To avoid confusion the various states have been classi-

fied here by theilr permutational symmetry, i.e. they have been desig-

nated as either symmetric or antisymmetric.

2. States with M; = £1

For states with M, = +1 the matrix elements, Dt',tl’ are
o1 ¥ cosB)e-i7/2,
ieiiasirﬁ/w/z
(1 + cosp)el?/2, (III-5)

for u' = -1, 0, + 1, respectively. An analysis similar to the one
which led to the wavefunction (III-4) now shows that for Mz =+ 1 a

correct wavefunction should be of the form
Viq ={}2Q(cosg cosy +i siny)+ st(cospg siny+1i cosy)]
X (£+ £)+u®(cosp sinyt i cos-y)(f-;)}e';ia (111-8)

where all the symbols have the same meaning as before. The functions
1] and V_, are degeﬂerate for both the atomic and molecular systems.

The real part of Y4y, e.g., may be written
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Re[¢+l]E\y=-[u2(f-§)+ st(f+ £)](cosq cosy - siny cosg siny)
+ 2Q(f + £)(cosq siny+ sing cosp cosy), (IT1-7)
and the imaginary part as
4 Im[wi]==—[u2(f-§)4-st(f+ £)1(siny cosy + cosq cosg siny)
+ 2Q(f+ £)(siny siny - cosg cos cosy). (111-8)

Again, the angular functions in Eq. (III-7) have odd parity, while their

behavior under permutation of the identical particles is given by
Pyo(cosa cosy - siny cosp siny) = -(cosa cosy - sing cosp siny),
Plz(cosa siny + siny cosp cosy) = cosq siny+ sing cosp cosvy.

Consequently, when (t) = f(-t), the wavefunction (III-7) is symmetric,

while for E(t) = -f(-t) it is antisymmetric under permutation of the

A
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identical particles. 1In this note only the states with M, = 0 (£ state

are considered in detail.

IV. RESULTS

It is convenient to divide all the investigated systems into
three groups. The systems of the first group are characterized by the
charge ratio, o = Z3/Z = - 1. The two lowest roots of the secular

equation together with the nonlinear parameters and the expectation



" values for various rgj for these systems are shown in Table I in order

of decreasing mass ratio p. The only stable systems for ¢ = = 1 are of
the antisymmetric type, and consequently the symmetric states have not
been considered. The systems of the second group are characterized by
0 = - 2. Here both the symmetric as well as the antisymmetric states
are stable. As 1t happens, there are very few real systems in this
category, and most of the tabular entries are simply points needed for
the graphs. Table II contains the two lowest roots, nonlinear parameters
and expectation values <r§j> for the antisymmetric states, while the
corresponding results for the symmetric states are shown in Table ITI.
Finallyi ip the thizgagroup is the He isoelectronic sequence. The
energies, parameters, and the calculated as well as the experimental
values of the isotope shifts for He and Lit are reported in Table IV
for both antisymmetric (2%P) states and the symmetric (2P) states.
Calculations have been completed for the Helium isoelectronic sequencs
through Né+8, and will farm the content of a separate report.i®

The values of the masses on which the results are based are

the subject of Appendix III.

V. DISCUSSION

l. General Remarks

In general, the existence of multiple minima is to be expectien
with expansions of the size employed here. Although large initial spac-

ings have been used to minimize the possibility of overlooking a true
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minimum, no assurance can be given that this has not happenc: occasion-
ally. Numerical interpolation together with graphical methcds ras been
used to optimize the nonlinear parameters. In view of the f=mct i“at
the main emphasis of this investigation lies in the broad aspects of
the three particle system with an arbitrary mass ratio, substantially
the same terms have been used in Eq. (IIT-4c) for the description of
all the systems. The terms have been chosen in the order of increasing
metric, i.e. the polynomial In a 1l0-term wavefunction includes all the
possible terms through second degree in u, s, and t; a 20-term wave-
function includes all terms through third degree in u, s, and t, etc.

In terms of the conventional classification of atomie and
molecular systems the energies reported here for the molecular systems
are to be regarded as the first rotational levelsl® (of the zero and
first vibrational levels) of the Zg and %, states. 1In the atamic 577
tems the total angular momentum of unity is the resultant of the angi-
lar momenta of the 1ls and Zp electrons. For all but the extreme vaiies
of the mass ratio, however, it can only be said with justification v =
the systems possess a total angular momentum of unity with no refer:no-
to the manner in which this angular momentum is distributea., C. A.
Coulson (private communication) has suggested that all of the state-
considered here be referred to as P states regardless of their xol- .-
or atomic character, since the total angular momentum as well a:s 't

z-component have been quantized.



The energies of molecular systems with infinite mclecular
masses (labeled p = » in the tables) are based on the value of the mass
ratio p = 10® (10* in one case). This value of p is more consistent
with the formulation of the problem since for truly infinite nuclear
masses the variables u, g, and y become constants. To the accuracy
reportedsthese results, of course, should be identical to those with
p = ». Also, the values of the pérameter ¢ for these systems (p = o)
have not been fully optimized, but were chosen reasonably large, yet
small enough so as not to lead to arithmetic difficulties. The param-
eter ¢ is analogous to a force constant, and consequently can be expectad
to increase without 1limit as p becomes infinitely large.

The wavefunction (III-4) with ¢ # 0 has the disadvantage that
for very large values of the mass ratio the basis set is linearly de-
pendent. In this range of p, the ug and <u> are essentially equal whiln
¢ is large. As a result, the wavefunction behaves somewhat like a o
function, and the .overlap matrix becomes nearly singular, i.e. one o=
more of its eigenvalues become very small or vanish. Consequently, .ao
expansions must be limited to a relatively small number of terms. The
ratio of the largest and smallest eigenvalues of the overlap matrix ru-
been used as a criterion for the numerical instability in a given case,
In addition the optimized energies have been recomputed with the tsrms
rearranged and the extent of agreement noted. In this manner the nuz:

of terms used and the number of significant figures reported in the



1b
tables has been determined. For Hg(m) the ratio of the lurgsct
smallest eigenvalue of the overlap matrix was found to be 1.1 x 10®
for the energy reported in Table I. As the mass ratio decreasss tns
linear dependency problem becomes progressively less critical. Thus
for the system pup this fatio was 3.65 x 107 for a wavefunction witrn

four times as many terms as that for Hg(w). It is interesting to nots

that for HE(m) only 10 terms with ¢ # O were sufficient to yield

Eg = - .6025036 a.u. which agrees to two parts in ten thousand with
the exact value (Hylleraasl” obtained Eeyxget = - .60264. . . a.u.)
while a 40-term calculation with ¢ = O gave only Eg = - .581948 a.u.

On the other hand a similar comparison in the case of pup revealed ths
a 40-term wavefunction with ¢ included improved the energy only in the
fifth significant figure over a 50-term wavefunction with ¢ = 0. Thre
foregoing arguments indicate that the linear dependency of the basis
set ¢ # O is less of a drawback than it may appear to be. The conviie
gence of this set as a function of the mass ratio is such as to alln.
the set to describe the systems reasonably well regardiess of tno oo -
ity of the linear dependency.

The results reported here were cbtained by means of prog.urs
written for the CDC 1604 electronic computer located in the Compii- o
Center of The University of Texas. The secular equations were =7 .
by the Schmidt-Jacobi rotation method. For a 50-term wavefuncii~ -

average running time was slightly over 20 minutes per set of pararoy o,
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for a 10-term wavefunction it was under 5 minutes per similar set. The
necessary integrals and methods of evaluating them are discussed in

Appendix II.

2. Charge Ratio o = - 1

This group includes the molecules HE, DE, and TE, and the
mesonic systems pup, dpud, and tut. The lowest root, Ep, is plotted
against log p in Fig. 1. The ground state (L = 0) energies, where
known, are also plotted for comparison on the same graph. The expecta-
tion values of various r?j are shown in Fig. 2. In the infinite mass
limit, and to a good approximation also for the large values of p(i.e.
the systems, Th, Db, and HL), the parameter Uy should represent the
equilibrium internuclear distance and hence be equal to <u>. As the
mass ratio becomes smaller, uy approximates the average internuclear
distance evermore poorly due to the anharmonicity of the vibrations.
When the masses become nearly equal such an interpretation loses 1t:
meaning altogether. At the same time Ey lies progressively higher avove
the ground state energy and, in fact, the results indicate that sysiems
with p less than about 4.3 do not exist in a bound state with angular
momentum equal to unity although they may be bound in their grcund :iatz,
This situation is reflected in the fact that the expectation valuzs o7

ryj and rfj increase sharply while the expectation values of r{ﬁ LEna

zero as p approaches 4.3 from larger values.l®
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Very little has been done so far on this problem even by the
Born-Oppenheimer or similar approximations to allow for an illuminating
comparison of results. Direct variational methods similar to the one
employed here have beén used to compute only the L = 0 state energles
of some of the systems considered in this note. The adiabatic approxima-
tion has been used by Cohen et all® to calculate the L = 1 states of the
mesonic molecules pup, dpd, and tut. Unfortunately, both of these papers
lack a clear statement concerning the values of the masses and conversion
factors employed in calculating the reported energies. Cohen et al ob-
tained the total energies -2623 ev and -2887 ev for the system pup and
dud, respectively. Belyaev reported the btinding energies for pup, dud,
and tpt to be 109 ev, 226 ev, and 288 ev, respectively. ©Since in reduced
atomic units the two particle energy is -0.5 for all systems, the values
of EO shown in Table I lead to the binding energies for the mesonic mole-
cules of 106.8 ev, 226.3 ev, and 288.8 ev, while the total energies are

-2635.0 ev, -2889.2 ev, and -2999.7ev.

3. Charge Ratio o = - 2

In contrast to the ¢ = - 1 case, binding is found here for the
symmetric as well as the antisymmetric states over the entire range cf
values of the mass ratio. Consequently, "atomic" wavefunctions (e = 0
in III-4) have been used for small values of p(p < ~10) while "moleculsr"

wavefunctions (b = 0 in III-4) have been employed for large values of
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p(p> ~1). The intermediate region has been computed with both types
of wavefunctions for comparison. The energies obtained with the atomic
wavefunction are better in both the symmetric and antisymmetric states
through p values of about 10.

Figs. 3-6 show the energies and expectation values as function
of log p. The striking feature is the clear division of the systems
into two groups with predominantly either atomic or molecular character.
While more pronounced in the antisymmetric states, this phenomenon is
present in both of the symmetry groups. It should be noted ‘that at the
atomic end the energy curve for the antisymmetric states (triplets)
starts to drop from the very beginning, i.e. at He(p = 0), while the
corresponding curve for the symmetric states (singlets) first rises
slightly towards the more positive energy values before falling off
towards the lower values in the molecular region. This behavior is to
be expected and is consistent with the fact that the mass-polarization
effect lowers the energy in triplets while raising it in singlets.

Arithmetic considerations made it necessary to use p = 10% in
the "infinite" mass caleculation of the symmetric (Iy) state. It is
quite evident, however, that both the Zg and %, energles approach the
exact infinite mass values®® of -3.808 a,u. and -2.309 a.u,, respectively.
!7 The negative values of the parameter ug in the p = 1 and p = 10 antisym-
metric states indicate that the Gaussian exponential is not very suitable
fof systems with only moderately large values of the mass ratio. More-
over, if ugy assumes large negative value while ¢ is very small as in the

p = 1 antisymmetric case
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- ¢(u - ug)® = - 2cugu + const, ug<< 0, c&L 1.

This indicates that a better description of this system would be ob-
tained with an expohential linear in u. In order to indicate that
better descriptions are possible in this region, the corresponding por-
tions of the curves on the graphs have been drawn dashed. Except for
the systems p = 0 (which is discussed in Section VI) and p = o there

has been no previous work done on any of the systems in this category.

VI. THE HELTUM ISOELECTRONIC SYSTEM

A. TIsotope Shifts

The material in this subsectién has already appeared elsewhere
in a preliminary form®2. The numerical results presented here consti-

tute a slight improvement over the earlier report.

to achieve the separation of the translational motion of the center of
mass and the internal motion of a system of three particles. Assuming
a simple open shell hydrogen-like wavefunction, they have, by perturba-
tion theory, obtained an analytical expression for the mass effect of a
two-electron atom., When experimental methods became sufficiently refined
to allow accurate measurements to be made on the isotope shift in helium,

it was found that the values of the isotope shift calculated from Hughes
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and Eckart's formula were in quantitative disagreement with the experi-

24,25 The discrepancy was especially pronounced in P

mental results.
states, Except for possibly a few unsuccessful attempts,26 there has
been no further theoretical work done along these lines for excited
states, mainly due to the lack of sufficiently accurately wavefunctions.
Bethe and Salpeter have stated that "the cause of these discrepancies
is not yet known,"#? while others®* have suspected the theory itself.

J The total mass effect is usually thought of as consisting of
two separate parts: the elementary mass correction in energy due to
the motion of the nucleus itself, and a much smaller correction arlsing
from the mass polarization (specific shift). The elementary correction
affects all the levels of an atom in the same way, is independent of the
state of ionization of the atom, and can be computed directly. The
second part of the mass correction differs for the various states of the
atom, Treated as a perturbation it is proportional to the expectation
value of the operator ¥;-Vs. It is this second part whose theoretical
value was untll now responsible for the disagreement with available
experimental results for the isotope shift.

The method employed in this work lends itself quite naturally
to this type of problem. The Hamiltonian (II-4) as a function of the
mass ratio p reflects the entire dependence of the energy on the masses.
The connection with experiment is made through the difference of the
spectroscopic term values for two isotopes of the same atom. The speciro-

scopic term value is the total (two-electron) atomic energy less the
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corresponding hydrogen-like (one-electron) energy, -+ Z%. The results
are shown in Table IV.

The discrepancy between the theoretical and experimental values
for the isotope shift in He has now been brought within the limits of ex-
perimental accuracy. On the basis of the agreement for helium, it can
probably be said with some confidence that the calculated results for Ii%t

are accurate to within 1%.

B. Energies for p = 0; Comparison with Pekeris, Schiff, and Lipsona8

The energies computed for the 2P and 2°P states of the helium
atom with p = 0 are campared in Table V with the results of Pekeris et al
for the same systems. The 350-term values reported here are slightly
better than the 220-term values that they obtained, though, as is to be
anticipated, they lie above their extrapolated estimates of the true
energies. The superiority of the 50-term results, of course, resides in
the fact that the wavefunction (III-4) contains two nonlinear parameters,
each of which has been fully optimized, whereas Pekeris et al preselected
.thelr corresponding nonlinear parameters. It is, however, interesting to
see just how well their preselected parameters function when used in a

50-term wavefunction. These parameters are

21p: o

2.4977, B = 0.601;

2%p: o = 2.5161, B

The corresponding energies are entered in Table V.



APPENDIX T. THE COCRDINATE TRANSFORMATION

The three vectors forming the sides of the triangle of the
particles are defined in terms of the position vectors of the particles,

i.e.

and hence

1
Tij l:(xj - Xi)2+ (yj - yi)2+ (ZJ' - zi)2:|2,

!

where Xy, Yk, 2k are the Cartesian coordinates of the particles in the
fixed frame. Note that xj3 = - xj;, ete. The Eulerian angles are then
defined by mesns of the vectors rjj as follows. Let 1 and k be unit
vectors in the positive x and z directions, respectively, k' a unit
vector in the positive z' direction, and n a unit vector along the line

of nodes such that

o Tes X ks k x k'
~ - ) - ¢
| L25 X Lz1) |k X k|
Then
cosq =1 - m,
cosg = k « k', ¥

cosy = (n » I12frize
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The formulae actually used in the coordinate transformation and which

follow from the above definitions of the Eulerian angles are

]

sing sing = (¥pz23) - Z23Y31)/Qs

cosa sing = (xpzzz] - Z23X31)/Q,

cosp = (Xp3y3) - Ya3x31)/Q,

sing siny = (zp3 + 237)/r1p,

sing cosy

2 2 2
[223(1’12 + T3 - Toz)

23y (rfp + r¥s - r%l]/ 2r2Q,

where Q has been already defined as

Q = |rp3z X rz] |-

The Hamiltonian may now be written in terms of the interparti-
cle distances and the Eulerian angles. The transformation, while labo-
rious, is straightforward. The Hamiltonian, after considerable reduc-

tion, becomes



-
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H = —%_'((ow)[(p‘r')(b; +25,) + /0""’5@3 02393

+ s O, D0, 0,, T Cos O, >3, dip T Q-Dé
+ 2_((3+|)( Ny 323 + 1, 93,) + 4 n,;’),e-k (Qél/n,7{/7;3)>23334

—(2Q/n; ”3:)D3:}M + @:LsinzF(nJ.}.n_; +(JR,5—A>3’L@0/G
+(2n,;2 +Q‘“eaz2{3A)§'J‘ + B(cosp Juaspddt +
}c.osg Do + Cos3 ,sm’lp Dot )= &stﬁ (”s'll'*”;; *(JRI:)‘)“MP

+C sindleost sin”'B Y +AQ™ S'"'IF(DLM-#Z cosp 9«331)]

rz7ng +z22,00 )

bhere
'LW:}_'A = (ZF"'")hv): ‘S‘h?r-{— [-2 G_'COSM +(h1;—-— n3‘7_

-
)Sln&‘] ,

"inm%QlB = [ﬂ.:(n.‘;’ + Nay +f>n,f)-— L}Qa}oin Yeosd
+ ( ﬂz; - ﬂ3‘|L) &,(Coszﬁ— SMZM) >
"\.7{ ol = 2(;1232 —n.g,a )@, (ws"’ﬁeos”df‘ _od ) sindlcoed - 2@ (1+2c08B)

2. = 2 L Y x
+4 (g eeng- no 7]+ N o8’ (N3 +h3) N (+eos ),



24b

2
T Ok )/rij ki ‘

and Zie is the charge of the ith particle. The change from the radial variables

i to u, s, and t defined in Eq. (II-5) is trivial, and is not considered here.



APPENDIX II. THE INTEGRATIONS

There are two basic types of integrals to be considered. TFor
systems with atomic character the wavefunction (III-4) with ¢ = O leads

to integrals

[} S u
I(L,N,M) = 1/A! [ ds [ du [ at shtMle-8eXt (A1I-1)
o] o o]

where
A=L+ M+ N.

These integrals are essentially the same as those derived by James and

Coolidge,29 and . are listed here merely for the sake of completeness.

1(0,0,M) = (1 - x)~(M+ 1) (ATT-2)
1(0,N,0) = [I(0,N - 1,0) + 11/(1 - x) (ATI-3)
1(1,0,0) = [I(L - 1,0,0) + L+ 1]/(1 - x) (ATI-4)

1(0,N,M) = [MI(O,N,M~ 1)+ NI(O,N-1,M)]/A(1~x) (AII-5)
1(L,0,M) = [LI(L-1,0,M)+ MI(L,0,M=-1)1/A(1-x) (AII-6)
1(L,N,0) = (LI(L - 1,N,0) + NI(L,N - 1,0)

+ A(A + 1)/(N + 1)]/A(1 - x) (ATI-7)

25




1(L,N,M) = [LI(L - 1,N,M) + NI(L,N - 1,M)

+ MI(L,N,M - 1)]}/A(1 - x)

26

(ATI-8)

For negative values of N two additional auxiliary functions are needed

[e 0]
[ sle-¥sas,
o

A(L;y)

0o S
[ as [ dt shtMe=SeXt,
o o

v(L,M)

The necessary recursion relations are

Then if

A(0;y) = Ly

it

A(L;y) = IA(L - 1;¥)/y

[l

V(-1,0) = - 1/x4n(1l - x)

v(-1,M)

- 1/x[MV(-1,M-1) - A(M-1;1-x)]
v(o,M) = A(M;1 - x)

V(L,0) = 1/x[A(L;1 - x) - A(L;1)]

V(L,M) = [IV(L - 1) + MV(M - 1)]/(1 - x).

I1(L,N,M) = 1/A!T'(L,N,M),

(AII-9)

(AII-10)

(ATT-11)

(AII-12)

(AII-13)

(AII-15)

(AIT-18)

(ATI-17)
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1'(0,-1,M) = v(-1,M) (ATI-18)
I1'(L,-1,0) = L1'(L - 1,-1,0)+ V(L - 1,0) (ATI-19)
I'(L,-1,M) = [LI'(L - 1,-1,M) + MI'(L,-1,M-1)

+ V(L - 1,M) - V(L,M - 1)]/(1 - x)  (AII-20)

Eq. (AII-8) may now be used to further lower N.

When b = 0 in the wavefunction (III-4) the resulting

integrals are of the form

[=¢] o0 u 2
[ du [ ds [ at s LM Ne-as-c(u-uo)® (ATI~21)
o] u  -u
The integration over s and t can be performed immediately and for even
values of M results in
)2

00 <] u
fau [ as [ at slegMyNe-as-c(u-uo
o u -u

= 2/(M+ l)a(lﬂ‘l) foodu uM{—I\T-l-l[(au)L+ L(au)L-l
o

-au-c{u-ug)®

+ . . .+ L(au) + L!]e (AII-22)
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Thus the integral to be evaluated is

m .
[ du uPe-gu-c(u-ug
o

)2

. e-a(uO-a/tﬂ:C)(a/c)(P+l)/2f°° (x+ K)pe'axadx, (AII-23)

where
K =~(:7;?uo - 1/2(;72?

The term exp[-a(up - a/4c))] may be factored out of all the matrix

elements; define

J(p) = (za./c:)(p*‘l)/2 fm(x + nDpe'axzdx. (AII-24)

-K

The lowest two integrals are given by

3(0) = 1/2{x/plert(=) + ert(xfd)], (ATI-25)
J(1) = e'aKa/Zc + ./a/c kJ(0). (AII-26)

All higher integrals may then be obtained by the use of the following

recursion formula

J(p) =~Ja/c ﬁJ(p - 1) + (p - 1)/2cd(p - 2). (AII-2 )
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' The error function in Bq. (AII-25) was evaluated by means of either the
normal or the asymptotic series depending on the value of the argument.
For negative values of the argument the first term on the
right in the recursion Eq. (AII-27) becomes negative, and the method
rapidly becomes useless due to the loss of accuracy. In such cases it
was necessary to resort to numerical integration of the integrals J(p)
for two high values of p(64 and 65), and then to use Eq. (AII-27) to
recur down. A careful investigation has shown Simpson's rule to be

quite satisfactory for that purpose.

APPENDIX III.

Frequently it becomes desirable to express the energies and
other physical properties in units other than those in which they are
reported. Tﬁere are two types of atomic units that are being used in
the literature. The reduced atomic units are based on the reduced mass
of a system of particles while ancther kind of atomic units is based on
the mass of one of the particles in the system. If this particle is an
electron these units then become the usual atomic units where the unit
of length is the Bohr radius (0.529172 K); if the particle is a meson
the units could be called mesonic atomic units. It is unfortunate that
it has become customary to céii any and all of these types of units
simply atomic units (a.u.). Throughout the text the notation a.u. repre-

sents the reduced atomic units. Note that for infinite masses the
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reduced atamic units and the Bohr atomle units are identical. For a
comparison of verious results to be possible a table of the masses on
which the calculetions are based is necessary. ©Such is the purpose of
Teble VI. All the results in Tables I - V are in the reduced atomic
units defined in Section II; to convert them into the Bohr atomic units
the energies must be multiplied and linear distances divided by the
factor u/me whose values for several systems of speclal interest are
shown in Teble VII. The results for the mesonic systems can also be
expressed in the mesonic atomic units by multiplying the energies by &
factor p/mu and distances by its reciprocal,®°

The results of Tables II and III, while being specifically for
systems with Z = - 1 and Zy = 2, may easily be made to apply to systems
with any velue of Z and Z3 such thet their ratio ¢ = ZS/Z = = 2, As has
been mentioned in Section II it is possible to work in charge-dependent
units in which case the Eqs. (II-8) may be used to convert the results
for one system with a given set of charges to those for a different
one. Thus, for example, by dividing the energy of the system p = 108
in Teble II by 16 one obtains the energy of the system with the same
mess ratio, but where the nucleli each have one half of the charge of a
proton, and the odd particle has the electronic charge. The energles

reported in ev are based on the value

meeti=2 = 27,2097 ev,
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ATOMIC ENERGIES,

TAELE IV

PARAMETERS, AND ISOTOPE SHIFTS

—— e = — . =

p x 10%

Isotope Shift

System Rydberg a b Energy calc. exp
(em™ 1) (a.u.) (em™ 1) (em™ 1)
2lp, He® 109717.345 1.8196 -2.12383358 1.68£.005°
2.75 ,4193 1.67 1.67€
2'p, He* 109722.2687 1.3709 -2.12383565 (1.58)8
2'p, (L1*)® 109727.295 0.9126 -4.99332659
4.36 .2970 2.13 L
2'p, (Li*)” 109728.723 0.7825 -4,99332987 (2.032)8
2%p, He® 109717.345 1.8196 -2.13317527
. 2.71 .3840 0467 0.675C
aPp, He* 109722.267 1.3709 -2.13317237 (0.745)2 ‘
2%p, (Li™)® 109727.295 0.9126 ~5.02774288
4.45 ,3075 0.63 .
2%p, (Li*)? 109728.723 0.7825 -5.02773889 (p.653)2

8Calculated from the Hughes-Eckhart
Ppradley and Kuhn, loc. cit.
CFred et al, loc. cit.

formla, footnote 23.



TABLE V

A COMPARISON WITH PEKERIS, SCHIFF, AND LIPSON:
THE HELIUM ATOM ENERGIES (ATOMIC UNITS) FOR THE CASE p = O

State Ms® PSR - 220 PSL - o PSR - 50
~olp -2.123841954 -2.12384140 -2.12384267 -2.1238400
2%p -2.1331635 -2,13316331 -2.13316413

Key: MS, This paper; PSL - 220, PSL - » results due to Pekeris
et al, footnote 28, from their 220 term wave function and from their
extrapolated estimates, respectively; PSL - 50, this paper, using
the non-linear parameter values used by Pekeris et al in the con-
struction of their wavefunctions.



TABLE VI

MASSES OF ELEMENTARY PARTICLES®

a® tC ac ¢ ud e

7294.4 5496.93 3670.44 1836.13 206.76 1.0

aIn units of the electron mass.
Pcomputed from R /Rg.* = 1 + m/m, = 1.00013709.

cBased on the following values taken from the American Institute
of Physics Handbook (McGraw-Hill, New York, 1957 ):

my,/mg = 1836.13
m, = 1.007595 a.m.,
my = 2.014190 a.m.,
my = 3.01650 a.m.

d

‘G. Shapiro and L. M. Lederman, Phys. Rev. 125, 1022 (1962).




TABLE VII

CONVERSION FACTORS®

System u/me u/mp
gy 09 1.0 -
T3 0.999818 --
D3 0.999728 --
Hp 0.999456 -
tut 199.26; 0.96375
dud 195.73, 0.94667
DHD 185.83, 0.89879
Mo 201.06 0.97243

8Tn the column headings 4 = reduced mass and m, = mass of
meson. In the row headings p indlcates s p-meson.




The I = 0 and L. = 1 energies in reduced atomlc units as function
of lgp for systems with the charge ratio o = -1. The L = O results are

taken from references 1-6.

LEGEND FOR FIGURE 2

The expectation values of r?d in reduced atomiec units as function

of 1lg p for systems with the charge ratio o = -l.

LEGEND FOR FIGURE 3

Charge ratio o = -2. The L = 1 energles in reduced atomic units
of the symmetric and antisymmetric states as function of 1g p. The
ghape of the curves near p = 1 1s not definitely established frgﬁ the
informafion given in Tables 2 and 3, and consequently the curves in

this region are shown dotted.

LEGEND FOR FIGURE 4

Charge ratio o = -2. The expectation values of rij_l in reduced
atomic units for the symmetric and antisymmetric states gs a function
of 1g p. The shape of the curves near p = 1 is not definitely established
from the informmtion given in Tables 2 and 3, and consequently the curves
in thls region are shown dotted. Where the scale of the graphs permits,
the values for p = 1 obtalned with the atomic and molecular wavefunctions

are shown separately.




LEGEND FOR FIGURE 5

Charge ratio o = -2. The expectation values of rij in reduced
atomic units for the symmetric and antisymmetric states as a function
of 1lgip. The shape of the curves near p = 1 is not definitely established
from the information given in Tables 2 and 3, and consequently the curves
in this region are shown dotted. Where the scale of the graphs permits,
the values for p = 1 obtained with the atomic and molecular wavefunctions

are shown separately.

LEGEND FOR FIGURE 6

Charge ratioc o = -2, The expectation values of rijz in reduced
atomic units for thé symmetric and antisymmetric states as a function
of 1lg p. The shape of the curves near p = 1 1s not definitely established
from the information given in Tebles 2 and 3, and consequently the curves
in this region are shown dotted. Where the scale of the graphs permits,
the values for p = 1 obtained with the stomic and molecular wavefunctions

are shown separately.
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